Lotele
Product Catalog

Made in Austria

TELE Haase Steuergeraete GesmbH

PAST TELE Haase Steuergeraete is an Austrian based, family owned technology company that is passionate about hiring
the best in the business to develop and manufacture control and monito-
ring solutions for both, the energy and industrial sector.

Founded in 1963, TELE Haase has been a market leader for time and monitoring relays and has been developing customized solutions and components for the industrial and energy sectors for more than five decades.

PRESENT TELE products are being used the world over and are most often used in control cabinets, industrial plants and transformer stations, as well as being utilized in wind, water, and solar energy power plants.

FUTURE In the coming years, our technology is poised to integrate seamlessly into the industrial landscape by learning to communicate and deliver its data across different interfaces in the network to the people and places that the data is needed. This is going to pave the way for the factory of the future and, even better, will allow industries to be more efficient, green, and worker friendly.

Serving the USA

TELE Controls Inc.

All of TELE Haase's industrial electronic technology products are developed and manufactured in Vienna, Austria. Our products are designed to protect, monitor and automate systems for a wide range of industries.

Since 2018, TELE Controls Inc. has been based out of Arlington, Virginia, fulfilling and exceeding the local sourcing needs of OEMs to resellers, and distributors all throughout North America. We are able to provide excellent on-demand project support as well as personal sales assistance.

Headquartered in Vienna, Austria

Offices in the UK and USA

Production facility in Austria since 1963

55+ years of experience

Global sales network serving 50+ countries

Reliable and green automation components

Product Portfolio

Time Delay Relays

- Single Function Timers
- ON and OFF delay
- Multi-Function Timers
- Timer Modules for Industrial Switching Relays
- Star-Delta Timers
- Digital Timers
- Staircase Timers
- Impulse Encoders
- Alternating Function Timers
- Pump/Load Alternators

Monitoring Relays

- Phase Failure/Loss
- Phase Sequence
- Phase Unbalance/Asymmetry
- Voltage up to 900V AC
- Current up to 100A AC/DC direct or higher via external CTs
- Effective Frequency from $40-70 \mathrm{~Hz}$
- Temperature via PTC, NTC or PT100
- Conductive Liquid Level

- 1~ Power Meter up to 50A and 1000 V with ModbusRTU Interface
- 1~ Power Meter up to 300A and 1000 V with ModbusRTU Interface
- Real Power Monitor up to $11 \mathrm{~kW} / 15 \mathrm{hp}$ direct or higher via external CTs
- Power Factor Monitor up to 11kW/15hp direct or higher via external CTs
Switching Relays

Product Series

Different designs for different needs:
ENYA, VEO, and GAMMA - play it safe!

	ENYA	VEO	GAMMA
Product	Time Delay and Monitoring Relays	Time Delay and Monitoring Relays	Time Delay Relays, Monitoring Relays, and Power Monitors
Dimensions ($\mathrm{w} \times \mathrm{h} \times \mathrm{d}$)	$0.69 / 1.38 \times 2.43 \times 2.56$ in ($17.5 / 35 \times 87 \times 65 \mathrm{~mm}$)	$0.88 / 1.76 \times 2.64 \times 2.99$ in ($22.5 / 45 \times 67 \times 76 \mathrm{~mm}$)	$\begin{aligned} & 0.88 / 1.76 \times 3.54 \times 4.25 \mathrm{in} \\ & (22.5 / 45 \times 90 \times 108 \mathrm{~mm}) \end{aligned}$
Design	Economical Design	Compact Industrial Design	Advanced Industrial Design
Marking area	-	Flexible or Fixed	Fixed
Product standards	EN 61812-1 EN 60947	EN 61812-1 EN 60947	$\begin{gathered} \text { EN 61812-1 } \\ \text { EN } 50178 \\ \text { EN } 60947 \end{gathered}$
Energy consumption	0.8-1.3W	extra low: $0.35-0.6 \mathrm{~W}$	1-1.5W
Electrical connection	Screw Terminals	Screw or Push-In Terminals	Screw Terminals
Overvoltage category	III / 4kV	III / 4/6kV	III / 4/6kV
Accuracy	$\leq 5 \%$	$\leq 2.5 \%$	$\leq 3 \%$

Product Features

- Economical design
- Time delay and monitoring relays
- Single and Multifunction versions
- Fully adjustable
- SPDT or DPDT outputs
- Operating temeperature - 13 to
$+131^{\circ} \mathrm{F}\left(-25\right.$ to $\left.+55^{\circ} \mathrm{C}\right)$
- LED indicators
- 12 to 240 V AC/DC, power supply
- cULus listed
- CE compliant
- RoHs compliant
- Compact industrial design
- Time delay and monitoring relays
- Single and multifunction versions
- Fully adjustable
- SPDT or DPDT outputs
- Low profile
- Extra efficient
- Operating temperature -13 to
$+140^{\circ} \mathrm{F}\left(-25\right.$ to $\left.+60^{\circ} \mathrm{C}\right)$
- LED indicators
- 12 to 240 V AC/DC, power supply
- cULus listed
- CE compliant
- RoHs compliant

GAMMA

[^0]
Our Heroes

E1ZM10 12-240 V AC/DC
Extra compact and multifunctional time delay relay for operating voltages from 12-240V AC/DC.

See page 12

V4PF480Y/277VSY02
The ultimate motor protection: Phase and temperature monitor in one compact device.

See page 22

Timer Module COM3T
Transform your regular switching relay into a multifunctional super time delay relay and con-
tactor.
See page 33

G4BM480V12ADTL20
The real power monitor that does not require software skills for set-up.
See page 27

F. Function Overview Time Delay Relays

Our Functions In Detail:

Abstract

E ON DELAY

When the supply voltage U is applied, the set interval t begins. After the interval t has expired the output relay R switches into on-position. This status remains until the supply voltage is interrupted. If the supply voltage is interrupted before the expiry of the set interval, the interval t already expired is erased and is restarted when the supply voltage is next applied.

A OFF DELAY WITHOUT AUXILIARY VOLTAGE

When the supply voltage U is supplied, the output relay R swiches into on-position. If the supply voltage is interrupted, the set interval t begins. After the set interval t has expired the output relay R switches into off-position. If the supply voltage is reconnected before the interval t has expired the interval already is erased and is restarted with the next cycle.
LED U/t OFF DELAY

S STAR-DELTA START-UP

When the supply voltage U is applied, the star-contact switches into on-position and the set star-time $t 1$ begins. After the interval t 1 has expired the star-contact switches into off-position and the set transit-time t2 begins. After the interval t2 has expired the delta-contact switches into on-position. To restart the function the supply voltage must be interrupted and re-applied.

ER
 ON DELAY AND OFF DELAY WITH CONTROL CONTACT

The supply voltage U must be constantly applied to the device. When the control contact S is closed, the set interval t 1 begins. After the interval t 1 has expired, the output relay R switches into on-position. If the control contact is opened, the set interval t 2 begins. After the interval t2 has expired, the output relay Switches into offposition. If the control contact is opened before the interval t 1 has expired, the interval already expired is erased and is restarted with the next cycle.

When the supply voltage U is applied, the release for the interval starts. When the control contact S is closed, the set interval t begins. If the control contact S is opened during the set interval t, the interval stops, and the already expired interval is stored. During the lapse of time the control contact can be opened or closed as often as required. If the sum of the periods, in which the control contact S is closed reaches the set interval t the output relay R switches into on-position. The interval is stopped and a further activation of the control contact S remains without effect. By interrupting the supply voltage, the device will be reset. A possibly expired time t is deleted.

Es \quad ON DELAY WITH CONTROL INPUT

The supply voltage U must be constantly applied to the device. When the control contact S is closed, the set interval t begins. After the interval t has expired the output relay R switches into on-position. This status remains until the control contact is opened again. If the control contact is opened before the interval t has expired , the interval already expired is erased and is restarted with the next cycle.

ET ON DELAY TWO WIRE CONNECTED

Wu
SINGLE SHOT LEADING EDGE VOLTAGE CONTROLLED applied.

When the supply voltage U is applied, the set interval t begins. After the interval has expired the thyristor switches on. This status remains until the supply voltage is interrupted. If the supply voltage is interrupted before the expiry of the interval, the interval already expired is erased and is restarted when the supply voltage is next
\square

nWu MAINTAINED SINGLE SHOT LEADING EDGE

When the supply voltage U is applied, the output relay R switches into on-position and the set interval t begins. After the interval t has expired the output relay switches into off-position. This status remains until the supply voltage is interrupted. If the supply voltage is reconnected before the interval t has expired, the unit continues to perform the actual single shot.

[^1]
EWs ON DELAY SINGLE SHOT LEADING EDGE WITH CONTROL CONTACT

The supply voltage U must be constantly applied to the device. When the control contact S is closed, the set interval t 1 begins. After the interval t 1 has expired, the output relay R switches into on-position and the set interval t2 begins. After the interval t2 has expired, the output relay switches into offposition. During the interval, the control contact can be operated any number of times. A further cycle can only be started when the cycle run has been completed.

Wa SINGLE SHOT TRAILING EDGE WITH CONTROL INPUT

The supply voltage U must be constantly applied to the device. Closing the control contact S has no influence on the condition of the output R. When the control contact is opened, the output relay switches into on-position and the set interval t begins. After the set interval has expired, the ouput relay switches into off-position. During the interval, the control contact can be operated any number of times. A further cycle can only be started when the cycle run has been completed.

nWa MAINTAINED SINGLE SHOT TRAILING EDGE

When the supply voltage U is supplied, the output relay R remains into off-position. As soon as the supply voltage is interrupted the output relay switches into on-position and the set interval t begins. After the set interval t has expired the output relay switches into off-position. When the supply voltage is reconnected before the interval t has expired, the unit continues to perform the actual single shot.

nWuWa MAINTAINED SINGLE SHOT LEADING AND TRAILING EDGE

When the supply voltage U is applied, the output relay R switches into on-position and the set interval t begins. After the interval t has expired the output relay switches into off-position. As soon as the supply voltage is interrupted the output relay switches into on-position again and the set interval t begins. After the set interval t has expired the output relay switches into off-position. If the supply voltage is interrupted (nWu) or reconnected (nWa) before the interval t has expired the unit continues to perform the actual single shot

WsWa \quad SINGLE SHOT LEADING AND SINGLE SHOT TRAILING EDGE WITH CONTROL CONTACT

The supply voltage U must be constantly applied to the device. When the control contact S is closed, the output relay R switches into on-position and the set interval t 1 begins. After the interval t 1 has expired, the output relay R switches into off-position. If the control contact is opened, the output relay again switches into on-position and the set interval t 2 begins. After the interval t 2 has expired the output relay switches into off-position. During the interval, the control contact can be operated any number of times.

Bi FLASHER PULSE FIRST

When the supply voltage U is applied, the output relay R switches into on-position and the set interval t begins. After the interval t has expired, the output relay R switches into off-position and the set interval t begins again. The output relay is triggered at a ratio of 1:1 until the supply voltage is interrupted.

Bp FLASHER PAUSE FIRST

[^2]When the supply voltage U is applied, the set interval t1 begins and the output relay R switches into on-position. After the interval t1 has expired, the set interval t2 begins. So that the output relay R remains in on-position, the control contact S must be closed and opened again within the set interval t2. If this does not happen, the output relay R switches into off-position and all further pulses at the control contact are ignored. To restart the function the supply voltage must be interrupted and reapplied.

li ASYMMETRIC FLASHER PULSE FIRST

When the supply voltage U is applied, the output relay R switches into on-position and the set interval t 1 begins. After the interval t 1 has expired, the output relay switches into off-position and the set interval t 2 begins. After the interval t2 has expired, the output relay switches into on-position. The output relay is triggered at the ratio of $\mathrm{t} 1: \mathrm{t} 2$ until the supply voltage is interrupted.

Ip ASYMMETRIC FLASHER PAUSE FIRST

When the supply voltage U is applied, the set interval $t 1$ begins. After the interval $t 1$ has expired, the output relay R switches into on-position and the set interval t2 begins. After the interval t 2 has expired, the output relay switches into off-position. The output relay is triggered at the ratio of t :t2 until the supply voltage is interrupted.

T, TW FUNCTION AUTOMATIC TIMER WITH (TW) OR WITHOUT (T) SWITCH-OFF WARNING

After the pushbutton (control input) has been pressed, the output relay R closes and the set interval t begins. If the pushbutton is pressed again before the interval has expired, the interval begins again (restart function complies with EN 60669-2-3). Rapid, multiple pressing of the pushbutton (pumping) adds 2,3 or more time intervals to extend the time up to 60 min . Prolonged pressure on the button ($>2 \mathrm{~s}$) aborts the interval running and switches the relay off (energy saving function). In the TW mode the device provides a switch-off warning (in accordance with DIN 180-158-2) by generating short pulses (flashing) at 30 s , 15 s and 5 s prior to switch-off.

P, PN IMPULSE SWITCH MODE

In this mode, every keypress of the pushbutton (control input) toggles the output relay R (flip-flop). In function P, the output relay remains in off-position, whenever the supply voltage is applied. In function PN, the output relay switches into on-position after applying the supply voltage U, if the output relay was in on-position last before power failure. In both functions the output relay switches into on-position, if a short voltage impulse (<2s) is applied to the additional control input (central ON). A longer voltage impulse (>2s) opens the output relay (central OFF).

P (R) IMPULSE SWITCH MODE WITH OFF DELAY

In this mode, every keypress toggles the output relay R (flip-flop). After the pushbutton (control input) has been pressed, the output relay closes and the set interval t begins. After the interval has expired the output relay switches into off-position. If the pushbutton is pressed again before the interval has expired, the interval will be canceled and the output relay switches into off-position.

LA LOAD ALTERNATOR - PUMP CHANGER

In this mode, every falling edge toggles the output relay R (flip-flop) from L1 to L2 or L2 to L1 whatever position is defined by the previous status. On Power-Up the relay R stays in off condition until the first falling edge is detected on S Terminal B1. To ensure a safe and optimal function, please turn both timing controllers on the front to the most left position (CCW), which equals 50 msec . In this operation mode, a minimum delay/de-bump time of 50 msec is applied from the falling edge of the control input until relay R is changing its state. Is a longer delay time as 50 msec is set, a short pulse on the " $S^{\prime \prime}$ input resets the times. The timer is restarted with the next falling edge signal on "S" input again. If you wish to apply longer delay times, set the according time selectors to the required values or contact your application engineer.

Our 3in1 pump alternating relay offers the most capability in the industry's most compact and space-saving DIN-Rail enclosure style. TELE's duplexer controls two loads simultaneously while enhancing the regular alternating function through integrated ON and OFF Delay functionality. The selector switch allows the user to lock in one sequence while the relay works with a wide range control voltage of 24 - 240V AC/DC.

Our E1ZMLA is commonly used in special applications where the optimization of load usage is required by equalizing the run time of two loads. Identical loads are used for the same job—one or more standby units are available in case the first load fails. However, an idle load might deteriorate due to lack of use and provide no safety margin. Alternating relays prevent this by assuring that multiple loads get equal run time. In addition, there are situations where a need arises to have multiple loads on at the same time for additional capacity if one load cannot keep up with demand.

This alternating functionality "LA" is initiated by a control switch, such as a float switch, manual switch, timing relay, pressure switch, or other isolated contact. Each time the initiating switch is opened, the output relay contacts will change state, thus alternating the two loads. Two LED indicators show the status of the output relay, control voltage and timing function.

Advantages

- 3in1 Duplex Control of Two Loads
- Integrated OFF and ON Delay
- Load Alternator w/ Selector Switch to lock Loads manually
- Control Voltage 24 - 240 V AC/DC
- 8A@250VAC SPDT Output
- Low Profile Selector Switch
- 2 LEDs for relay status, timing and operating voltage indication - cULus, CE, EAC, RoHs
- Rugged Design for Industrial Applications

■ Improved Inventory Maintenance
$\left.\begin{array}{|c|c|c|c|c|}\hline \text { TYPE DESIGNATION } & \text { FUNCTIONALITY } & & \text { DIMENSIONS } \\ \text { (W X H X D) }\end{array}\right)$

TYPE DESIGNATION	E1ZM10 12-240V	E1ZM10 24-240V	E1ZMQ10	E1ZMW10	E3ZM20
ORDER INFORMATION					
Art. No. single package	110100	110200	110202	-	111100
Art. No. package 10 pcs.	110100A	110200A	110202A	110206A	-
FUNCTIONALTY	MULTIFUNCTION		4-FUNCTION	MULTIFUNCTION	MULTIFUNCTION
E On delay	-	■	■	■	-
R Off delay	-	■	\square	■	-
Es On delay with control contact	\square	\square	\square		-
Wu Single shot leading edge, voltage-controlled	-	■	\square	■	-
Ws Single shot leading edge with control contact	■	■		■	■
Wa Single shot trailing edge with control contact	-	■		■	-
Bp Flasher pause first	-	-			-
Wt Pulse repetition analysis				\square	
WsWa Single shot leading and trailing edge with control contact				■	
POWER SUPPLY CIRCUIT					
Supply voltage	12-240V AC/DC	24-240V AC/DC	24-240V AC/DC	$24-240 \mathrm{~V}$ AC/DC	12-240V AC/DC
Frequency	$48-63 \mathrm{~Hz}$				
TIME CIRCUITS					
Time ranges	7				
Setting range	$0.05 \mathrm{~s}-100 \mathrm{~h}$				
INPUT CIRCUIT					
Trigger input	■	■	■	■	■
OUTPUT CIRCUIT					
Contacts	SPDT	SPDT	SPDT	SPDT	DPDT
Switching capacity	2000VA (8A / 250V AC)				
DESIGN					
Dimensions ($\mathrm{w} \times \mathrm{h} \times \mathrm{d}$)	$0.69 \times 2.43 \times 2.56$ in ($17.5 \times 87 \times 65 \mathrm{~mm})$				$\begin{aligned} & 1.38 \times 2.43 \times 2.56 \mathrm{in} \\ & (35 \times 87 \times 65 \mathrm{~mm}) \end{aligned}$
Certificates	CE, cULus, EAC				

VEO series time delay relays

TYPE DESIGNATION	V2ZM10	V2ZQ10	V2ZI10	V2ZE10	V2ZR10	V2ZA10	V2ZS20
ORDER INFORMATION							
Art. No.	125100	125150	125200	125110	125120	125500	125300
Art. No. 10 pcs packaging unit	125100A	125150A	-	125110A	125120A	-	-
FUNCTIONALITY	10-FUNCTION	4-FUNCTION	FLASHER	ON DELAY	OFF DELAY	5-FUNCTION	STAR DELTA
E On delay	\square	■		\square		\square	
R Off delay	\square	\square			■		
A Off delay without auxiliary voltage						\square	
Es On delay with control contact	\square						
Wu Single shot leading edge, voltage-controlled	■	\square					
nWu Maintained single shot leading edge						\square	
Ws Single shot leading edge with control contact	■						
Wa Single shot trailing edge with control contact	\square						
nWa Maintained single shot trailing edge						\square	
nWuWa Maintained single shot leading and trailing edge						\square	
Bi Flasher pulse first	■						
Bp Flasher pause first	\square	\square					
Wt Pulse repetition analysis	\square						
Ec Additive ON Delay	■						
Ii Asymmetric flasher pulse first			\square				
Ip Asymmetric flasher pause first			\square				
S Star-delta start-up							■
SUPPLY CIRCUIT							
Supply voltage	$12-240 \mathrm{~V}$ AC/DC	$24-240 \mathrm{~V}$ AC/DC	12-240V AC/DC	$12-240 \mathrm{~V}$ AC/DC	$12-240 \mathrm{~V}$ AC/DC	12-240V AC/DC	12-240V AC/DC
Frequency range	$48-63 \mathrm{~Hz}$						
TIME CIRCUITS							
Time ranges	10					4	
Setting range	$0.05 \mathrm{~s}-100 \mathrm{~h}$					$0.1 \mathrm{~s}-3 \mathrm{~min}$	$0.05 \mathrm{~s}-3 \mathrm{~min}$
INPUT CIRCUIT							
Trigger input	■	■	\square		■		
OUTPUT CIRCUIT							
Contacts	SPDT						
Switching capacity	2000VA (8A / 250V AC)		1250VA (5A / 250V AC)	1250VA (5A / 250V AC)		1250VA (5A / 250V AC)	750VA (3A / 250V AC)
DESIGN							
Dimensions ($w \times h \times d$)	$0.88 \times 2.64 \times 2.99$ in ($22.5 \times 67 \times 76 \mathrm{~mm})$						
Certificates	CE, cULus, EAC						

TYPE DESIGNATION	G2ZM20	G2ZMF11	G2ZI20	G2ZIF20	G27S20
ORDER INFORMATION					
Art. No.	120401	120103	120501	120201	120301
FUNCTIONALITY	MULTIFUNCTION	MULTIFUNCTION	2-TIME MULTIFUNCTION	2-TIMEMULTIFUNCTION	STAR-DELTA
E On delay	■	■			
R Off delay	-	-			
ER On delay and off delay with control contact			■	■	
Es On delay with control contact	■	■			
Wu Single shot leading edge, voltage-controlled	\square	\square			
Ws Single shot leading edge with control contact	■	■			
Wa Single shot trailing edge with control contact	■	-			
EWu ON delay single shot leading edge, voltage-controlled			■	■	
EWs ON delay single shot leading edge with control contact			■	■	
WsWa Single shot leading and trailing edge with control contact			-	\square	
Bi Flasher pulse first	■	■			
Bp Flasher pause first	\square	\square			
Ii Asymmetric flasher pulse first			-	\square	
Ip Asymmetric flasher pause first			-	-	
S Star-delta start-up					-
SUPPLY CIRCUIT					
Supply voltage	12-240V AC/DC	24-240V AC/DC	12-240V AC/DC	24-240V AC/DC	24-240V AC/DC
Frequency range			$48-63 \mathrm{~Hz}$		
TIME CIRCUITS					
Time ranges	7	16	7	10	4
Setting range	$0.05 \mathrm{~s}-100 \mathrm{~h}$	0.05 s-30 d	$0.05 \mathrm{~s}-100 \mathrm{~h}$	$0.05 \mathrm{~s}-10 \mathrm{~h}$	$0.05 \mathrm{~s}-3 \mathrm{~min}$
INPUT CIRCUIT					
Trigger input	\square	\square	■	\square	
Remote potentiometer input		\square		■	
OUTPUT CIRCUIT					
Contacts	DPDT	$2 \times$ SPDT	DPDT	DPDT	DPDT
Switching capacity			1250VA (5A / 250V AC)		
DESIGN					
Dimensions ($\mathrm{w} \times \mathrm{h} \times \mathrm{d}$)	$0.88 \times 3.54 \times 4.25$ in ($22.5 \times 90 \times 108 \mathrm{~mm}$)				
Certificates	CE, cULus, EAC				

Function Overview Monitoring Relays

If the measured value exceeds the adjusted MIN threshold, the output relay Rel2 switches into off-position. If the measured value exceeds the adjusted MAX threshold, the output relay Rel1 switches into off-position. The output relays Rel1 and Rel2 switch into on-position again, as soon as the measured value falls below the according adjusted threshold (MAX or MIN).

MM MINIMUM AND MAXIMUM MONITORING (MIN/MAX)

If the measured value falls below the adjusted MIN threshold, the output relay Rel2 switches into off-position. The output relay Rel2 switches into on-position again, as soon as the measured value exceeds the adjusted MIN threshold. If the measured value exceeds the adjusted MAX threshold, the output relay Rel1 switches into offposition.
The output relay Rel1 switches into on-position again, as soon as the measured value exceeds the adjusted MIN threshold.

TEMP \quad TEMPERATURE MONITORING

If the supply voltage U is applied and the cumulative resistance of the PTC-circuit is less than $3.6 \mathrm{k} \Omega$ (standard temperature of the motor), the output relay R switches into on-position. When the cumulative resistance of the PTC-circuit exceeds $3.6 \mathrm{k} \Omega$, the output relay switches into off-position. The output relay switches into on-position again after the cumulative resistance falls below $1.6 \mathrm{k} \Omega$.

PUMP UP

PUMP DOWN PUMP DOWN

Connection of the probe rods E1, E2 and E3. When the air-fluid level falls below the minimum probe E2 the set interval of tripping delay begins. After the expiration of the interval, the output relay R switches into on-position. When the air-fluid level again rises above the maximum probe E1, the set interval of turn-off delay begins. After the expiration of the interval the output relay switches into off-position.

LATCH

Connection of the probe rods E1, E2 and E3. When the maximum probe E1 gets moistened the set interval of tripping delay begins. After the expiration of the interval the output relay R switches into on-position. When the airfluid level falls below the minimum probe E2, the set interval of turn-off delay begins. After the expiration of the interval, the output relay switches into off-position.

\section*{| ASYM | ASYMMETRY MONITORING |
| :--- | :--- |}

If the asymmetry of the phase-to-phase voltages exceeds the value set at the ASYM-regulator, the output relay switches into off-position. If the neutral wire is connected to the device, the asymmetry of the phase voltages referred to the neutral wire (Y-voltage) is monitored also. In that case both values of the asymmetry are evaluated and if one of the values exceeds the value set at the ASYM-regulator, the output relay switches into off-position.

ON DELAY

ON DELAY

Function 1
PUMP UP WITH MIN-IMAX- ALARM
(2uA) 1 container, 4 probes, 1 pump

Level control between probes E2 and E3 by pumping up. The probes E1 and E4 serve as overflow- resp. dry running alarm and may be used to control alarm devices, valves or additional pumps.

The level is controlled around probe E2 by pumping up and down. The right function if a dry running alarm (probe E4) is needed and the application requires emptying and filling up of the container.

	TWO INDEPENDENT CONTAINERS -
Function 5	PUMP UP (2u2) $1-2$ container, 1-2 probes each , 1 pump each

Function 7 \begin{tabular}{l}
PUMP up between the probes E1-E2

CHA-E4. (alternatively control around
probe). This feature allows level co
in two separate containers with only
device. It is also possible to co
cascades.

(2UC) 1 container, 2 probes, 2 pumps
\end{tabular}

Pump up between the control probes E1 and E2. The V4LM acts as an intelligent
 pump changer (for even use) with pump monitoring (feedback inputs E3 \& E4). If a pump fails, the remaining pump is permanently prioritized and an alarm is issued. For maximum availability and uninterrupted operation through full redundancy.

Function 9	WELL CONTROL (3w-) WITH WELL AND
DRY ALARM	
1 well, 1 high tank, 3 probes, 1 pump	

The function serves to ensure the water supply by means of a high tank and a
 well (pump up into the high tank from the well). Alarm functions: well alarm and dry alarm (high tank and well without water). The pump is protected against dry running in case the well (or feeding container) is below sufficient liquid levels.

Function 2

PUMP DOWN WITH MIN-/MAX- ALARM
(2dA) 1 container, 4 probes, 1 pump

Level control between probes E2 and E3 by pumping down. The probes E1 and E4 serve as overflow- resp. dry running alarm and may be used to control alarm devices, valves or additional pumps.

Function 4
 PUMP UP AND DOWN (bidirectional) WITH MAXIMUM ALARM (3b+) 1 container, 4 probes, 2 pumps

Pump down between the probes E1-E2 resp. E3-E4. (alternatively control around one probe). This feature allows level control in two separate containers with only one device. It is also possible to control cascades.

PUMP DOWN WITH INTEGRATED PUMP CHANGE (2dc) 1 container, 2 probes, 2 pumps

Function 8

Pump down between the control probes E1 and E2. The V4LM acts as an
 intelligent pump changer (for even use) with pump monitoring (feedback inputs E3 \& E4). If a pump fails, the remaining pump is permanently prioritized and an alarm is issued. For maximum availability and uninterrupted operation through full redundancy.

CODE OUTPUT FOR PLC CONNECTION

 (4Ce) 1 container, 4 probesThe probe states are coded via the 3 output relays. Therefor up to 4 liquid levels can be evaluated for one container. By means of a connection to an external PLC it is thus possible to respond to individual application conditions. Simple connection without external control unit can also protect up to four containers, each with a probe against overflow or dry running and switch on a collective alarm by using simple interconnection.

ENYA series monitoring relays

TYPE DESIGNATION	E1PF480Y/277VSY01	E1PF480Y/277VSY10	E1YM480/277VS10	E1UM230V01	E1IM10AACL10
ORDER INFORMATION					
Art. No. single package	1340406	1340405	1340409	1340101	1340200
FUNCTIONALITY	Phase Monitor	Phase Monitor	3-phase Voltage Monitor	1-phase Voltage Monitor	1-phase Current Monitor
Phase failure	■	-			
SEQ ... Phase sequence	-	■	■		
ASYM ... Asymmetry	■	■			
O ... Over					\square
U ... Under			\square	■	\square
W ... Window			■	-	\square
SWITCHING THRESHOLD					
Maximum			75 to 110% of U_{N}	80 to 120% of U_{N}	10 to 100% of I_{N}
Minimum			65 to 100% of U_{N}	75 to 115% of U_{N}	5 to 95% of I_{N}
Asymmetry	5 to 25%, OFF	5 to 25\%, OFF	-	-	-
MEASURING CIRCUIT					
Measuring variable	3~ Voltage AC Sinus	3~ Voltage AC Sinus	3~ Voltage AC Sinus	1~Voltage AC/DC Sinus	1~ Current AC Sinus
Measuring input	$U_{N}=480 / 277 \mathrm{~V} \mathrm{AC}$	$U_{N}=480 / 277 \mathrm{~V} \mathrm{AC}$	$\mathrm{U}_{\mathrm{N}}=480 / 277 \mathrm{~V} \mathrm{AC}$	24 V AC/DC and 230V AC	10A AC
SUPPLY CIRCUIT					
Supply voltage	$\begin{aligned} & -10 \% \text { to }+10 \% \text { of } U_{N} \\ & 432 \mathrm{~V} \text { to } 528+V \text { AC } \end{aligned}$	$\begin{aligned} & -10 \% \text { to }+10 \% \text { of } U_{N} \\ & 432 \mathrm{~V} \text { to } 528 \mathrm{~V} \text { AC } \end{aligned}$	$\begin{aligned} & -35 \% \text { to }+10 \% \text { of } U_{N} \\ & 312 \mathrm{~V} \text { to } 528 \mathrm{~V} \text { AC } \end{aligned}$	$\begin{gathered} -25 \% \text { to }+20 \% \text { of } U_{N} \\ 18 \text { to } 29 \mathrm{VAC} / \mathrm{DC} ; 173 \text { to } 276 \mathrm{~V} \mathrm{AC} \end{gathered}$	$\begin{gathered} -15 \% \text { to }+15 \% \text { of } 230 \mathrm{~V} \text { AC } \\ 195 \mathrm{~V} \text { to } 265 \mathrm{~V} \text { AC } \end{gathered}$
Frequency range	$48-63 \mathrm{~Hz}$	$48-63 \mathrm{~Hz}$	$48-63 \mathrm{~Hz}$	$48-63 \mathrm{~Hz}$ or DC	$48-63 \mathrm{~Hz}$
TIME CIRCUITS					
Tripping delay (DELAY)	fixed, approx. 100ms	$0.1-20 \mathrm{~s}$	$0.1-10$ s	-	0,1-10s
OUTPUT CIRCUIT					
Contact	SPDT	SPDT	SPDT	SPDT	SPDT
Switching capacity	1250VA (5A / 250V AC)				
DESIGN					
Dimensions ($\mathrm{w} \times \mathrm{h} \times \mathrm{d}$)	$0.69 \times 2.43 \times 2.56$ in ($17.5 \times 87 \times 65 \mathrm{~mm})$				
Certificates	CE, cULus, EAC				

GAMMA series monitoring relays

VEO series monitoring relays

TYPE DESIGNATION	V2PF480Y/277VSY01	V2PM400Y/230VS10	V2UM230V10	V4PF480Y/277VSYTK02
				 1 最 GGG Aिक
ORDER INFORMATION				
Art. No. screw terminal	2100000	2100500	2100300	2104200
Art. No. package 10 pcs.	2100000A	-	-	-
FUNCTIONALITY	Phase Monitor	3-phase Voltage Monitor	1- phase Voltage Monitor	Phase and Temperature Monitor
Phase failure	-	-		-
SEQ ... Phase sequence	-	-		\square
ASYM ... Asymmetry	\square			■
U ... Under		\square	\square	
W ... Window		-	-	
Temperature monitoring (PTC)				■
SWITCHING THRESHOLD				
Maximum	-	75 to 130% of U_{N}	80 to 115% of U_{N}	-
Minimum	-	70 to 125% of U_{N}	75 to 110% of U_{N}	-
Asymmetry	5 to 25%, OFF	-	-	5 to 25%, OFF
MEASURING CIRCUIT				
Measuring variable	3~ Voltage AC Sinus	3~ Voltage AC Sinus	1~Voltage AC/DC AC Sinus	3~ Voltage AC Sinus Temperature
Measuring input	$U_{N}=480 / 277 \mathrm{~V} \mathrm{AC}$	$U_{N}=400 / 230 \mathrm{VAC}$	$U_{\text {N }}=24 \mathrm{~V} \mathrm{AC/DC} \mathrm{or} 230 \mathrm{~V} \mathrm{AC}$	$U_{\mathrm{N}}=480 / 277 \mathrm{~V} \mathrm{AC}$
SUPPIY CIRCUIT				
Supply voltage	$\begin{gathered} -10 \% \text { to }+10 \% \text { of } U_{N} \\ 432 / 250 \mathrm{~V} \text { to } 528 / 305 \mathrm{~V} \text { AC } \end{gathered}$	$\begin{gathered} -35 \% \text { to }+35 \% \text { of } U_{N} \\ 260 / 250 \mathrm{~V} \text { to } 540 / 310 \mathrm{~V} \text { AC } \end{gathered}$	$-30 \% \text { to }+30 \% \text { of } U_{N}$ 17 V to 31V AC/DC; 161V to 299V AC	-10% to $+10 \%$ of U_{N} $432 / 250 \mathrm{~V}$ to $528 / 305 \mathrm{~V}$ AC
Frequency range	$48-63 \mathrm{~Hz}$	$16.6-400 \mathrm{~Hz}$	$16.6-400 \mathrm{~Hz}$ or DC	$48-63 \mathrm{~Hz}$
TIME CIRCUITS				
ON DELAY	approx. 400 ms	approx. 200 ms	approx. 300 ms	approx. 500 ms
Tripping delay (DELAY)	< 250 ms	$0.1-10 \mathrm{~s}$	$0.1-10 \mathrm{~s}$	approx. 250 ms
OUTPUT CIRCUIT				
Contact	SPDT	SPDT	SPDT	DPDT
Switching capacity	2000VA (8A / 250V AC)			
DESIGN				
Dimensions ($\mathrm{w} \times \mathrm{h} \times \mathrm{d}$)	$0.88 \times 2.64 \times 2.99 \text { in }(22.5 \times 67 \times 76 \mathrm{~mm})$			$\begin{aligned} & 1.76 \times 2.64 \times 2.99 \text { in } \\ & (45 \times 67 \times 76 \mathrm{~mm}) \end{aligned}$
Certificates	CE, cULus, EAC			

TYPE DESIGNATION	G2UM300VL20	G2IM5AL20	G2IM10AL20	G2JM5AL20
ORDER INFORMATION				
Art. No.	2390304	2390411	2390410	2390801
FUNCTIONALITY	1- phase Voltage Monitor	1-phase Current Monitor	1-phase Current Monitor	3-phase Current Monitor
O ... Over	■	\square	\square	\square
U ... Under	\square	-	\square	\square
W ... Window	\square	■	■	■
SEQ ... Phase sequence				
Phase failure				
ASYM ... Asymmetry				
+LATCH ... Error memory	■	■	■	■
SWITCHING THRESHOLD				
Maximum	10 to 100% of U_{N}	10 to 100% of I_{N}	10 to 100% of I_{N}	10 to 100% of $I_{\text {N }}$
Minimum	5 to 95% of U_{N}	5 to 95% of I_{N}	5 to 95% of I_{N}	5 to 95% of I_{N}
Asymmetry	-	-	-	-
MEASURING CIRCUIT				
Measuring variable	Voltage AC/DC AC Sinus	Current AC/DC AC Sinus	Current AC/DC AC Sinus	Current AC AC Sinus
Measuring input	$30 / 60$ / 300V AC/DC	$20 \mathrm{~mA} / 1 \mathrm{~A} / 5 \mathrm{~A}$ AC/DC or CT	$100 \mathrm{~mA} / 1 \mathrm{~A} / 10 \mathrm{~A}$ AC/DC or CT	5 A AC or CT
Frequency Range	16,6-400Hz or DC	16,6-400	zz or DC	$16,6-400 \mathrm{~Hz}$
SUPPLY CIRCUIT				
Supply voltage	24 to 240 V AC/DC			
TIME CIRCUITS				
ON DELAY	-	-	-	-
Start-up surpression time (START)	0-10 s	0-10 s	0-10 s	0-10 s
Tripping delay (DELAY)	$0.1-10 \mathrm{~s}$	$0.1-10 \mathrm{~s}$	$0.1-10 \mathrm{~s}$	$0.1-10 \mathrm{~s}$
OUTPUT CIRCUIT				
Number of switch contacts	DPDT	DPDT	DPDT	DPDT
Switching Capacity	1250VA (5A / 250V AC)			
DESIGN				
Dimensions ($\mathrm{w} \times \mathrm{h} \times \mathrm{d}$)	$0.88 \times 3.54 \times 4.25$ in ($22.5 \times 90 \times 108 \mathrm{~mm}$)			
Certificates	CE, cULus, EAC			

GAMMA series monitoring relays

TYPE DESIGNATION	G2PM690VSY20	G2PU690VS20	G2TFKN02	G2LM20
ORDER INFORMATION				
Art. No.	2390517	2390507	2390110	$\begin{aligned} & 2390201 \text { (24V AC) } \\ & 2390202 \text { (110V AC) } \\ & 2390200 \text { (230V AC) } \end{aligned}$
FUNCTIONALITY	3-phase Voltage Monitor	3- phase Voltage Monitor	Temperature monitoring (PTC)	Level monitoring of conductive liquids
U ... Under	\square	\square		
W ... Window	-			
SEQ ... Phase sequence	■	\square		
Phase failure	\square	\square		
ASYM ... Asymmetry	■	\square		
Temperature monitoring (PTC)			\square	
Short circuit monitoring (PTC)			\square	
Zero-voltage latch (PTC)			\square	
Test function (PTC)			■	
Pump up				\square
Pump down				\square
SWITCHING THRESHOLD				
Maximum	55 to 115% of U_{N}	-	$\begin{gathered} \geq 3.6 \mathrm{k} \Omega \\ \text { (switch-off resistance) } \end{gathered}$	-
Minimum	50 to 110% of U_{N}	180 to 690V AC	$\begin{gathered} \leq 1.6 \mathrm{k} \Omega \\ \text { (switch-on resistance) } \end{gathered}$	-
Asymmetry	5 to 25%, OFF	fixed, 25%	-	-
MEASURING CIRCUIT				
Measuring variable	3~ Voltage AC Sinus	3~ Voltage AC Sinus	Temperature	Liquid level via conductive probes
Measuring input	3~ 208-690V AC	180-690V AC	-	0.25 to 100k
SUPPLY CIRCUIT				
Supply voltage	= Measuring voltage 177 V to 794 V AC	= Measuring voltage 177 V to 794 V AC	24 to 240 V AC/DC	24V AC 110 V AC 230V AC
Frequency Range	$20-70 \mathrm{~Hz}$	$20-70 \mathrm{~Hz}$	-	-
TIME CIRCUITS				
Start-up surpression time (START)	-	-	-	-
Tripping delay (DELAY)	$0.1-10 \mathrm{~s}$	$0.1-10 \mathrm{~s}$	-	0.5-10 s
OFF DELAY	-	-	-	0.5-10 s
OUTPUT CIRCUIT				
Contacts	DPDT	DPDT	DPDT	DPDT
Switching capacity	1250VA (5A / 250V AC)			
DESIGN				
Dimensions ($\mathrm{w} \times \mathrm{h} \times \mathrm{d}$)	$0.88 \times 3.54 \times 4.25$ in ($22.5 \times 90 \times 108 \mathrm{~mm}$)			
Certificates	CE, cULus, EAC			

Power Monitors

Monitoring of electronic motors

TELE power monitoring systems offer significant advantages, particularly in situations in which monitoring tasks are usually carried out by sensors:

- No problems due to contamination and any decalibration of the sensors
- No maintenance and cleaning costs
- Easy to use, even in charged air or volatile substances
- Savings in terms of cabling
- No use of explosion-proof barriers necessary
- Reduction in error sources
- Simple retrofitting

Current monitoring relays
Pure current measurements in the supply to motors can only be used in an extremely restricted capacity to monitor loads. This is due to three essential factors:

1) In alternating current circuits, the measured current is apparent current. This total current comprises the sum of reactive and active current components. However, when generating mechanical power it is the active current that is exclusively decisive. The reactive current merely causes losses and does not contribute to the shaft power delivered.
2) In an underload range the current does not reduce in a linear manner with the load but instead remains relatively high due to the necessary magnetisation current. Therefore, no relevant correlation exists between current and load.
3) The current is dependent on the supply voltage. An undervoltage condition with a constant load can result in an increased current draw. This therefore eliminates monitoring the pure active current too.

Thus, monitoring pure current is only applicable in extreme operating conditions, such as a drive blockage, because the current rises dramatically in such cases.

Power monitoring systems with power factor measurement $(\cos \varphi)$ The power factor $\cos \varphi$ is the cosine of the phase shift angle between the current drawn and the voltage applied. In electrical motors this is dependent on the loading and theoretically equals 1 in an ideal case. However, due to induction it effectively lies within a range of 0.85 to 0.95 with a nominal load.

In an underload range, the $\cos \varphi$ monitor is extremely significant because the proportion of losses at a lower load increases dramatically and results in a $\cos \varphi$ of up to <0.5 in an idle state. This is not applicable around the zero point and in an overload range because load changes only result in minimal changes to the phase shift angle φ.

Power monitoring systemswith effective power measurements The effective power measurement facilitates obtaining the most precise feedback regarding the state of an electrical motor because the effective power is proportional to the shaft power. A direct correlation exists between the effective power supplied and the motor loading (torque with constant rotational speed) across the entire working range.

Examples for power monitor-usage:

- Agitators Machinery tools
- Crushers ■ Conveyor systems
- Grinders - Screening machinery
- Shredders Bridge and portal cranes
- Compactors - Centrifugal and piston pumps
- Ventilation units

TYPE DESIGNATION	G2CM400V10AL20	G4CM690V16ATL20	G2BM480V12AFL10	G4BM480V12ADTL20
				a \qquad
Art. No.	2390602	2394600	2390700	2394706
FUNCTIONALITY	Power factor $\cos \varphi$ in 1- or 3-phase mains	Power factor $\cos \varphi$ in 1- or 3-phase mains	True power monitoring in 1- or 3-phase mains	True power monitoring in 1- or 3-phase mains
O ... Overload monitoring	\square		\square	\square
U ... Underload monitoring	\square		\square	-
W ... Window	■			■
2MIN ... Minimum monitoring		\square		\square
2MAX ... Maximum monitoring		\square		-
MIN/MAX ... Minimum- and maximum monitoring		■		-
+LATCH ... Error memory	\square	\square	\square	\square
I = 0 DETECTION ... Recognition of disconnected consumers		■	-	-
Temp ... Temperature monitoring of the motor winding		■		-
SWITCHING THRESHOLD				
Threshold P / P1	$\cos \varphi$ Max: 0.2-1.0	$\cos \varphi$ 1: 0,3-1 (inductive) 1-0,3 (capacitive)	5 to 120% of P_{N}	2.5kW: 120W to 2.5W 10kW: 480W to 10kW
Threshold P2	$\cos \varphi$ Min: 0.1-0.99	$\cos \varphi$ 1: 0,3-1 (inductive) 1-0,3 (capacitive)	-	2.5kW: 120W to 2.5 W 10kW: 480W to 10kW
MEASURING CIRCUIT				
Measuring variable	Power factor $(\cos \varphi)$, 1 - or 3-phase loads AC Sinus	Power factor $(\cos \varphi)$, 1 - or 3-phase loads AC Sinus	True power, 1- or 3-phase loads AC Sinus	True power, 1- or 3-phase loads AC Sinus
Measuring range	0.1 to 1	0.3 to 1	$\begin{gathered} 0.75 \mathrm{~kW} \cdot 1.5 \mathrm{~kW} \cdot 3 \mathrm{~kW} \cdot 6 \mathrm{~kW} \\ 1 \mathrm{hp} \cdot 2 \mathrm{hp} \cdot 4 \mathrm{hp} \cdot 8 \mathrm{hp} \end{gathered}$	$\begin{gathered} 2.5 \mathrm{~kW} \cdot 10 \mathrm{~kW} \\ 3.4 \mathrm{hp} \cdot 13.6 \mathrm{hp} \end{gathered}$
Measuring input voltage	$\begin{gathered} 40 \text { to } 415 \mathrm{~V} \text { AC (1-ph) } \\ 40 / 23 \text { to } 415 / 240 \mathrm{~V} \text { AC (3-ph) } \end{gathered}$	85 to 690V AC (1-ph) 85 to 690/400V AC (3-ph)	0 to 480 V AC (1-ph) 0 to 480/277V AC (3-ph)	0 to 480 V AC (1-ph) 0 to 480/277V AC (3-ph)
Overload capacity voltage	500 V AC (1-ph) 500/289V AC (3-ph)	796 V AC (1-ph) 796/460V AC (3-ph)	550 V AC (1-ph) 550/318V AC (3-ph)	550 V AC (1-ph) 550/318V AC (3-ph)
Measuring input current	0.5 to 10A	$\begin{gathered} 1 \text { to } 8 \mathrm{~A}(4.8 \mathrm{~kW}) \\ 2 \text { to } 16 \mathrm{~A}(19.6 \mathrm{~kW}) \end{gathered}$	0 to 6A (1.5kW) 0 to 12A (6kW)	0.15 to 6 A (2.5 kW) 0.3 to 12 A (10kW)
Overload capacity current	11A permanent	20A permanent	12A permanent	12A permanent
SUPPLY CIRCUIT				
Supply voltage	Selectable via power module TR2	Selectable via power module TR3	Selectable via power module TR2	24-240V AC/DC
TIME CIRCUITS				
Start-up surpression time (START)	1-100 s	3-180s	0.1-2 s	0-100 s
Tripping delay (DELAY)	$0.1-40$ s	$1-50 \mathrm{~s}$	0.1-2 s	0.1-50 s
INPUT CIRCUIT				
Trigger Input	-	Y1-Y2 (Latch)	Y1-Y2 (Latch)	Y1-Y2 (Latch)
OUTPUT CIRCUIT				
Contacts	DPDT	2 x SPDT	SPDT	$2 \times$ SPDT
Switching capacity	1250VA (5A / 250V AC)			
design				
Dimensions ($\mathrm{w} \times \mathrm{h} \times \mathrm{d}$)	$\begin{aligned} & 0.88 \times 3.54 \times 4.25 \mathrm{in} \\ & (22.5 \times 90 \times 108 \mathrm{~mm}) \end{aligned}$	$\begin{aligned} & 1.76 \times 3.54 \times 4.25 \mathrm{in} \\ & (45 \times 90 \times 108 \mathrm{~mm}) \end{aligned}$	$\begin{gathered} 0.88 \times 3.54 \times 4.25 \mathrm{in} \\ (22.5 \times 90 \times 108 \mathrm{~mm}) \end{gathered}$	$\begin{aligned} & 1.76 \times 3.54 \times 4.25 \mathrm{in} \\ & (45 \times 90 \times 108 \mathrm{~mm}) \end{aligned}$
Certificates	CE, cULus, EAC	CE, cULus, EAC	CE, cULus, EAC	CE, cULus, EAC

TELE SENS

The new, compact power metering modules with ModBus RTU interface, for highly accurate, flexible and reliable measurements.

TELE introduces a new range of communication-capable monitoring devices with ModBus RTU interface with the focus on electric energy applications and monitoring of key electrical values in industrial plants.

The modules may look like regular current transformers but they reliably measure current / voltage / power / energy and various other electrical values in single-phase networks. These values are provided to any kind of control unit, datalogger or PLC unit via the established industrial standard ModBus RTU.

The fast measurement cycles and data transmission gives the plant operator a clear view of the condition of his installation. This accurate process data enables specialists and engineers to adapt maintenance intervals accordingly, and help to avoid costly unscheduled downtimes.

1-phase power meter AC/DC with ModBus RTU
Converter design
AC up to 50A or up to 300A and DC up to 50A or up to 400A with ModBus RTU/ RS485 interface, DIN rail or panel mount, Frequency range DC or 1 to 400 Hz

Integrated Measurements

Irms, Vrms, Watt, VAr, VA, Vpk, Ipk, frequency, $\operatorname{Cos} \varphi$, energy bidirectional, THD: 800V AC / 1000V DC

Serial converter USB-RS485
(isolated up to 5 kV)
USB
The S-USB485 is a serial converter and galvanically isolated up to 5 kV , based on chip USB FTDI. Windows validated drivers download automatically when your PC is online. This device connects safely to any ModBus devices on RS485.

Add-Ons

In addition to our core products we are glad to be offering the green extra:

Accessoires	- DIN-rail mounting plates: MP - Probes: SK - Sealable frontcovers: FA-G2 - Power modules: TR2 and TR3	Page 30 Page 31 Page 31 Page 31
Switching Relays Relay Sockets Accessoires	- Slim Interface Relays series: STKR - Miniature Ice Cube Relays series: RA and RM - PCB/Slim Ice Cube Relays series: RP - 8-/11-pin Ice Cube Relays series: RT - Multifunctional timer module series: COMBI - Accessories, Sockets	Page 32 Page 32 Page 32 Page 32 Page 33 Page 33
Soft Starters	- Motor starter series: P4.0	Page 34
Thyristor Control Units	- Thyristor control units series: GTF - Thyristor switch (SSR) series: GTS - Fuse and fuse holders	Page 35 Page 35 Page 35
DC Power Supplies	- Switching power supplies	Page 36

Mounting plates MP

easily attach any DIN-rail device to every kind of surface, panel and backplate

2		TYPE DESIGNATION	FITS	ATTACHMENT	DIMENSIONS (W X H X D)	ART. NO.
		MP-UNIVERSAL	ENYA, GAMMA, VEO	$\emptyset 0.16$ in (4 mm)	$\begin{aligned} & 0.87 \times 1.57 \times 0.28 \mathrm{in} \\ & 22.1 \times 39.8 \times 7.0 \mathrm{~mm} \end{aligned}$	075574

TR2, TR3, SNT series power modules for transforming the supply voltage to the internal operating voltage of GAMMA relays

Probes - SK series
for monitoring level of conductive liquids

Front cover FA-G2
for GAMMA monitoring relays (width 22.5 mm)

STKR + PB-B SKR

TYPE DESIGNATION	RATED VOLTAGE		RATED CURRENT	$\begin{aligned} & \text { RELAY } \\ & \text { VOLTAGE } \end{aligned}$	CONTACTS	PACKAGING UNIT	ART. NO.
STKR 524	24 V	AC/DC	6A	24 V DC	SPDT	10 pcs	180504
STKR 024	24 V	DC		24 V DC	SPDT		180503
STKR 615	115 V	AC/DC		24 V DC	SPDT		180506
STKR 730	230 V	AC		60 V DC	SPDT		180505
ACCESSORIES	FUNCTION		$\begin{gathered} \text { RATED } \\ \text { CURRENT } \end{gathered}$	DETAILS	CONTACTS	PACKAGING UNIT	ART. NO.
PB-B SKR	Jumper Link		-	Blue	20	10 pcs	180535
PB-R SKR			-	Red			180536
RM699V-3011-85-1024	Replacement relay for STKR		6A	24V DC	SPDT	20 pcs	100660
RM699V-3011-85-1060			60 V DC	SPDT	100661		

RA, RM series Miniature Ice Cube Relays

TYPE DESIGNATION	RATED VOLTAGE		RATED CURRENT	LED	CONTACTS	PACKAGING UNIT	ART. NO.
RA 524L-N	24 V			-			100623LD-N
RA 615L-N	115 V	AC		\square			100621LD-N
RA 730L-N	230 V		12A	■	DPDT		100624LD-N
RA 012L-N	12 V			\square			100625LD-N
RA 024L-N	24 V	DC		\square			100622LD-N
RM 512L-N	12 V			\square			100612LD-N
RM 524L-N	24 V			\square			100613LD-N
RM 548L-N	48 V	AC		\square		10 pcs	100614LD-N
RM 615L-N	115 V			\square			100618LD-N
RM 730L-N	230 V			\square			100619LD-N
RM 012L-N	12 V		7A	\square	4PDT		100601LD-N
RM 024L-N	24 V			■			100603LD-N
RM 048L-N	48 V	DC		\square			100602LD-N
RM 060L-N	60 V			\square			100616LD-N
RM110L-N	110 V			\square			100617LD-N
RM 220L-N	220 V			\square			100620LD-N

RP

COMBI series multifunction timer module for industrial relays (RT) with socket type ES9 and PF-113BEM (ES12)

TYPE DESIGNATION	FUNCTIONS	TIME RANGES	SUPPLY VOLTAGE	NUMBER OF SWITCHING CONTACTS	DIMENSIONS (W X H X D)	CERTIFICATES	ART. NO.
COM3T	8 E, R, Ws, Wa, Wu, Es, Bp, Bi	$\begin{gathered} 8 \\ (0.05 s-10 d) \end{gathered}$	24-240V AC/DC	DPDT or 3PDT (according to industrial relay)	$35 \times 12 \times 47 \mathrm{~mm}$	CE, cURus	237010

Relay Sockets for switching relays

TYPE DESIGNATION	FOR USE WITH MODULES	TERMINALS	FOR SERIES	RATED VOLTAGE	MOUNTING	PACKAGING UNIT	ART. NO.
PYF14BE (ES 15/4N)	Yes	Screw Terminals	RA, RM	300 V AC	DIN Rail	10 pcs	180134
PYF14BE3 (ES 15/4S)	Yes	Screw Terminals	RA, RM	300 V AC	DIN Rail	10 pcs	180145
PYF14BE3CC (ES 15/4G)	Yes	Push-In Terminals	RA, RM	300 V AC	DIN Rail	10 pcs	180148
CST-B14F2-L (ES 15/4B)	Yes	Screw Terminals	RA, RM	300 V AC	DIN Rail	10 pcs	180146
PI50BE/3R (ES 50/3)	Yes	Screw Terminals	RP	300 V AC	DIN Rail	20 pcs	180150
PI50BE/3-CC (ES50/3G)	Yes	Push-In Terminals	RP	300 V AC	DIN Rail	20 pcs	180149
PI50BE (ES50)	Yes	Screw Terminals	RP	300 V AC	DIN Rail	20 pcs	180137
ES 9	Yes	Screw Terminals	RT 8-pin	300 V AC	DIN Rail, Surface	10 pcs	180041
PF113BEM (ES12)	Yes	Screw Terminals	RT 11-pin	300 V AC	DIN Rail, Surface	10 pcs	180136
PF113BE (R11X)	No	Screw Terminals		300 VAC	DIN Rail, Surface	10 pcs	180155

Modules and accessories for switching relays

Socket PYF14BE (ES15/4N)

Socket PYF14BE3CC (ES15/4G)

Socket PF113BE (R11X)

TYPE DESIGNATION	TYPE DESCRIPION	FOR SOCKETS SERIES	FOR SWITCHING RELAYS SERIES	RATED VOLTAGE	PACKAGING UNIT	ART. NO.
M21N	Diode	PYF, CST, PI	RA, RM, RP	6-230V DC (+A1)	20 pcs	180261
M41R	LED (red) + Diode			6-24V DC (+A1)		180263
M53	RC-Element			110-230V AC		180264
M71	Varistor	PYF, CST		24V AC/DC		180266
M73	Varistor			230 AC/DC		180230
TYPE21 (TVD1)	Diode	PF113BE, ES9	RT	6-24V DC (+A1)		180230
TYPE41 (TVL1)	LED + Diode			6-24V DC (+A1)		180232
HB/RM-RA	Retaining Clip (metal)	PYF, CST	RA, RM	-		180032
HB/ES15	Retaining Clip (plastic)			-		180153
HB/RP16	Retaining Clip (plastic)	PI	RP	-		180029
HB/RT	Retaining Clip (metal)	PF, ES9	RT	-	10 pcs	180043

Motor Starter P4.0

The 0.88in smart motor starter that that makes your MCBs obsolete!

Functionality

Today's drive solutions require powerful and flexible instruments. The compact motor starter P-4.0 from TELE can be used for motors up to 4.0 kW @ 400 V and includes 5 functions in one compact unit, requiring only $22,5 \mathrm{~mm}$ width. This intelligent instrument offers soft start, soft stop, forward/reverse, current protection and an electronic motor protection.

Offering the integrated motor protection plus isolation relays the use of an MCB is no longer necessary. A simple circuit breaker protects the installation against short circuit and faulty wiring. The soft start and stop function is performed by semiconductors (thyristors) and the reversing function by internal relays, operated in the standstill phase. After performing the start/stop function the semiconductors are bypassed by integrated relays to minimize power dissipation. The intelligent combination of semiconductors and relays increases lifetime and efficiency of the product. The integrated current limit protects motors, shafts and plants from mechanical stress and reduces maintenance and standstill times

Technical features

- Forward/Reverse of 3-ph ac motors 3 AC 480 V / 9 A, equals 4.0kW/5.5hp @ 400VAC
- Integrated reversing unit (forward/reverse)
- 2-ph control for softstart and stop
- Integrated bypass relays
- 3 pots for adjustment of torque, time and max. current
- 4 LEDs indicate status and error
- Reset button on front and external reset available
- Article number: 490800 (F/R + blocking protection)

490801 (F/R + motor protection + isolation contactor)

Your advantages

- Up to 5 functions in one instrument:
- Forward/Reverse, soft start, current limit, motor protection, soft stop.

■ Minimized space consumption, only 22.5 mm width

- Simple commissioning and easy operation
- Robust semiconductors with 1500 V max. isolation voltage
- Increased system availability by motor protection function
- Increased lifetime by hybrid design compared to relay solution
- Energy saving by bumpless soft start/stop function and bypass relay

Applications

- Doors, lifting and transport applications
- Transport systems (belts and rollers)

■ Motorized valves in process applications (chemical and petrochemical, power generation plants)

- Pumps and fans
- Switching of 3 ph transformers

■ ... and a lot of other applications that require sophisticated drive solutions

TYPE DESIGNATION	FUNCTIONALITY	MOTOR CONTROL	NOMINAL CURRENT	NOMINAL MOTOR POWER	DIMENSIONS (W X H X D)	CERTIFICATES	ART.NO.
CHRISTIAN P-4.0/RL/OL	Forward/Reverse, soft start, current limit, blocking protection, soft stop	2-phase	9 A	4kW / 5.5hp	$\begin{gathered} 0.88 \times 4.13 \times 47.4 \mathrm{in} \\ (22.5 \times 105 \times 120.3 \mathrm{~mm}) \end{gathered}$	CE, cULus	490800
CHRISTIAN P-4.0/RU/TP/IC	Forward/Reverse, soft start, soft stop, motor protection + isolation contactor	2-phase	9 A	4kW / 5.5hp		CE, cULus	490801

TYPE DESIGNATION	AUXILIARY VOLTAGE	NOMINAL VOLTAGE	NOMINAL CURRENT	FAN	INTERNAL FUSE	OPERATING MODE	DIMENSIONS (W X H X D)	ART. NO.
GTF-25-480-0-0-0-0 1-P-M	24V AC/DC	480 V AC *	25A			Phase clipping control (other operating modes configurable)	$60 \times 136,5 \times 143 \mathrm{~mm}$	493100
GTF-40-480-0-0-0-0 1-P-M			40A				$60 \times 136,5 \times 143 \mathrm{~mm}$	493105
GTF-50-480-0-0-0-0 1-P-M			50A				$80 \times 136,5 \times 143 \mathrm{~mm}$	493108
GTF-60-480-0-0-0-0 1-P-M			60A				$80 \times 136,5 \times 143 \mathrm{~mm}$	493111
GTF-75-480-0-0-0-0 1-P-M			75A				$127 \times 136,5 \times 143 \mathrm{~mm}$	493121
GTF-90-480-0-0-0-0 1-P-M			90A				$127 \times 136,5 \times 143 \mathrm{~mm}$	493131
GTF-120-480-0-0-0-0 1-P-M			120A	\square			$127 \times 150,5 \times 143 \mathrm{~mm}$	493141
GTF-150-480-0-0-1-0 1-P-M			150A	■	-		108,3 $\times 302 \times 170,4 \mathrm{~mm}$	493152
GTF-200-480-0-0-1-0 1-P-M			200A	\square	\square			493161
GTF-250-480-0-0-1-0 1-P-M			250A	\square	\square			493171
Configuration cable + software								493090

* other nominal voltages upon request

GTF

GTS

Fuse holder

GTS series Thyristor switch (compact design, operating mode zero point switch)

TYPE DESIGNATION	NOMINAL VOLTAGE	NOMINAL CURRENT	CONTROL INPUT	FAN	DIMENSIONS (W X H X D)	ART. NO.
GTS-15/48-D-0	480 V AC *	15A	6-32V DC		$24 \times 100 \times 107 \mathrm{~mm}$	493010
GTS-25/48-D-0		25A			$24 \times 100 \times 107 \mathrm{~mm}$	493005
GTS-40/48-D-0		40A			$35 \times 100 \times 142 \mathrm{~mm}$	493003
GTS-50/48-D-0		50A			$60 \times 100 \times 142 \mathrm{~mm}$	493001
GTS-60/48-D-0		60A			$80 \times 100 \times 142 \mathrm{~mm}$	493020
GTS-75/48-D-0		75A			$127 \times 100 \times 142 \mathrm{~mm}$	493021
GTS-90/48-D-0		90A			$127 \times 100 \times 142 \mathrm{~mm}$	493022
GTS-120/48-D-0 VEN92		120A		\square	$127 \times 100 \times 142 \mathrm{~mm}$	493023

* other nominal voltages upon request

Semiconductor fuses (capsule fuse)

| TYPE DESIGNATION | NOMINAL
 CURRENT | NOMINAL CURRENT
 THYRISTOR CONTROL | FUSE SIZE | ART. NO. |
| :--- | :---: | :---: | :---: | :---: | :---: |
| HL-Fuse 5A | 10 A | 5 A | $10 \times 38 \mathrm{~mm}$ | 490971 |
| HL-Fuse 15A | 25 A | 15 A | $10 \times 38 \mathrm{~mm}$ | 490975 |
| HL-Fuse 25A | 30 A | 25 A | $10 \times 38 \mathrm{~mm}$ | 490972 |
| HL-Fuse 35A | 40 A | 35 A | $41 \times 51 \mathrm{~mm}$ | 490973 |
| HL-Fuse 50A | 63 A | 50 A | $22 \times 58 \mathrm{~mm}$ | 490974 |
| HL-Fuse 50A GTF | 50 A | 50 A | $22 \times 58 \mathrm{~mm}$ | 490986 |

Fuse holders (capsule fuse)

TYPE DESIGNATION	RATED CURRENT (IEC)	POLES	FUSE SIZE	ART. NO.
Fuse holder 1-P 10x38	32A	1-Poles	$10 \times 38 \mathrm{~mm}$	490976
Fuse holder 3-P 10x38	32A	3-Poles	$10 \times 38 \mathrm{~mm}$	490977
Fuse holder 1-P 14x51	50A	1-Poles	$14 \times 51 \mathrm{~mm}$	490978
Fuse holder 3-P 14x51	50A	3-Poles	$14 \times 51 \mathrm{~mm}$	490979
Fuse holder 1-P 22×58	100A	1-Poles	$22 \times 58 \mathrm{~mm}$	490987
Fuse holder 3-P 22×58	100A	3-Poles	$22 \times 58 \mathrm{~mm}$	490988

COMPACT POWER SUPPLIES	TYPE	INPUT VOLTAGE	SIZE (WxHxD)	OUTPUT VOLTAGE	OUTPUT CURRENT	OUTPUT POWER	ART. NO.
	HDR-15-24	85-264V AC	$17.5 \times 90 \times 54.5 \mathrm{~mm}$	$\begin{gathered} 24 \mathrm{~V} D C \\ \text { (adj. } 21.6-29 \mathrm{~V} D \mathrm{DC} \end{gathered}$	0.63A	15W	491701
	HDR-30-24		$35.0 \times 90 \times 54.5 \mathrm{~mm}$		1.50A	30W	491702
	HDR-60-24		$52.5 \times 90 \times 54.5 \mathrm{~mm}$		2.50 A	60W	491703
	HDR-100-24		$70.0 \times 90 \times 54.5 \mathrm{~mm}$		3.83A	100W	491704

Power Supplies - DC Power Supplies, Industrial Design

	TYPE	INPUT VOLTAGE	SIZE (WxHxD)	OUTPUT VOLTAGE	OUTPUT CURRENT	OUTPUT POWER	ART. NO.
INDUSTRIAL POWER SUPPLIES	DRAN30-12A	85-264V AC	$40.5 \times 90 \times 114 \mathrm{~mm}$	$\begin{gathered} 12 \mathrm{~V} D C \\ \text { (adj. } 12-14 \mathrm{~V} D C \text {) } \end{gathered}$	2.50 A	30W	491572
	DRAN60-12A				5.00A	60W	491587
	DRAN120-12A		$64.0 \times 124.5 \times 116.6 \mathrm{~mm}$		10.0A	36W	491568
	DRAN30-24A		$40.5 \times 90 \times 114 \mathrm{~mm}$	$\begin{gathered} 24 \mathrm{~V} D C \\ \text { (adj. } 24-28 \mathrm{~V} \text { DC) } \end{gathered}$	1.25 A	30W	491476
	DRAN60-24A				2.50 A	60W	491575
	NDR-120-24	90-264V AC	$40.0 \times 125.2 \times 113.5 \mathrm{~mm}$		5.00A	120W	491601
	NDR-240-24		$63.0 \times 125.2 \times 113.5 \mathrm{~mm}$		10.0A	240W	491610
	NDR-480-24		$85.5 \times 125.2 \times 113.5 \mathrm{~mm}$		20.0A	480W	491619

E1ZM10 12-240V AC/DC

Example product code time delay relay
ENYA series, in a 0.69 in wide housing, multifunctional timer with a SPDT relay output and a supply voltage of $12-240 \mathrm{~V}$ AC/DC.

G2PU690VS20

Example product code monitoring relay
Gamma series, in a 0.88in wide housing, measures 3-ph voltage, under voltage detection for a nominal voltage of 690V, includes phase sequence monitoring and DPDT output

Latele

US Office
 TELE Controls Inc.

1101 Wilson Blvd
6th Floor
Arlington, VA 22209
United States

UK Office

TELE Control Ltd.

Park House 200 Drake Street Rochdale, OL16 1PJ United Kingdom
United Kingdom

Global Headquarters

TELE Haase Steuergeraete Ges.m.b.H.

Vorarlberger Allee 38
Vienna, 1230
Austria

We're here to help. Please contact us directly or get in touch with your personal TELE reseller.
www.tele-controls.com
sales@tele-controls.com

[^0]: - Advanced industrial design
 - Time delay and monitoring
 relays
 - Power monitors
 - Single and multifunction
 versions
 - Fully Adjustable
 - SPDT or DPDT outputs
 - Operating temperature - 13 to
 $+131^{\circ} \mathrm{F}\left(-25\right.$ to $\left.+55^{\circ} \mathrm{C}\right)$
 - LED indicators or LCD display
 - 12 to 240 V AC/DC, power supply
 - 12 to 500 VAC, 24V DC power
 supply via Power Modules
 - cULus listed
 - CE compliant
 - RoHs compliant

[^1]: Ws SINGLE SHOT LEADING EDGE WITH CONTROL INPUT

 The supply voltage U must be constantly applied to the device. When the control contact S is closed, the output relay R switches into on-position and the set interval t begins. After the interval t has expired the output relay switches into off-position. During the interval, the control contact can be operated any number of times. A further cycle can only be started when the cycle run has been completed.

[^2]: When the supply voltage U is applied, the set interval t begins. After the interval t has expired, the output relay R switches into on-position and the set interval t begins again. After the interval t has expired, the output relay switches into off-position. The output relay is triggered at a ratio of $1: 1$ until the supply voltage is interrupted.

